sábado, 16 de novembro de 2013

Sobre James Prescott Joule

Reprodução
James Prescott Joule estudou durante algum tempo com John Dalton (químico e físico inglês, fundador da teoria atômica moderna), mas sua formação científica foi principalmente autodidática.

James Joule foi o primeiro cientista a estabelecer o princípio da interconversibilidade das diversas formas de energia, ou seja, da termodinâmica. Ele também se preocupou, desde cedo, com a importância de se fazerem medidas exatas - suas pesquisas caracterizaram-se particularmente por essa preocupação com a precisão dos dados obtidos.

Sua importante descoberta resultou de uma longa série de experiências sobre as relações quantitativas entre os efeitos elétricos, mecânicos e químicos. Em 1843, Joule anunciou ter determinado a quantidade de trabalho necessária para produzir uma unidade de calor, chamada equivalente mecânico do calor.
Unidade Joule

Para conseguir o equivalente mecânico do calor, Joule empregou quatro métodos crescentes de exatidão. O primeiro consistia em medir a elevação da temperatura, a corrente e o trabalho mecânico resultante da rotação de um pequeno eletromagneto na água entre os pólos de outro magneto.

O segundo método determina a elevação da temperatura forçando a água através de tubos capilares. O terceiro depende da compressão do ar. E o quarto - o mais conhecido nos dias de hoje -, este produz calor pela fricção da água por meio de pás, girando sob a ação da queda de um peso. 

Por esse processo Joule obteve diferentes resultados para a unidade térmica britânica, concluindo por adotar a de 781,8 libras-pé, chamadaunidade Joule, e que corresponde ao trabalho produzido ao se deslocar um metro um corpo com um Newton (1 N) de peso.

James Joule também pesquisou as mudanças térmicas experimentadas pelos gases comprimidos através de pequenas aberturas - e as mudanças experimentadas pelos sólidos, sob compressão, em solução, e em diversas outras situações. 

Sua obra completa foi publicada, em dois volumes, pela Physical Society of London, sob o título Trabalhos científicos, entre 1885 e 1887.


quarta-feira, 13 de novembro de 2013

Geradores Elétricos e Força Eletromotriz


Geradores eletricos (pilhas) que transformam energia química em energia elétrica 

Gerador elétrico é um equipamento que transforma em energia elétrica outras formas de energia. Uma bateria de automóvel, por exemplo, transforma a energia química em energia elétrica. Uma usina hidrelétrica utiliza a energia mecânica transformando-a em energia elétrica.
Portanto, um gerador elétrico é o aparelho que realiza a transformação de uma forma qualquer de energia em energia elétrica.
Um gerador possui dois terminais denominados polos:
Polo negativo corresponde ao terminal de menor potencial elétrico.
Polo positivo corresponde ao terminal de maior potencial elétrico.
Quando colocado em um circuito, um gerador elétrico fornece energia potencial elétrica para as cargas, que entram em movimento, saindo do polo negativo para o polo positivo.
A potência elétrica total gerada (Pg) por um gerador é diretamente proporcional à intensidade de corrente elétrica. Ou seja:



Pg = fem . i
Onde:
fem é a constante de proporcionalidade, chamada de força eletromotriz.
i é a intensidade de corrente elétrica entre os terminais do gerador.
Portanto, a força eletromotriz de um gerador pode ser definida pelo quociente:



Sabendo que a potência elétrica é dada em watts (W) e a intensidade da corrente é dada em ampère (A), temos:



Assim, a unidade de medida da força eletromotriz no sistema internacional é o volt (V).

Rendimento elétrico de um gerador

Potência elétrica lançada: É a potência elétrica fornecida pelo gerador ao circuito externo.



onde U é a diferença de potencial ou tensão, entre os terminais do gerador.

A potência elétrica dissipada internamente é dada por:



Onde: r é a resistência interna do gerador.
i é a intensidade de corrente elétrica.

O rendimento (η) do gerador é a razão entre a potência lançada e a potência total gerada, ou seja:

domingo, 10 de novembro de 2013

Energia Cinética

Energia cinética é a energia que está relacionada à movimentação dos corpos, ou seja, é a energia que um corpo possui em virtude de ele estar em movimento. Mas como podemos calcular a energia cinética de um corpo? Ao fazer algumas observações sobre os movimentos dos corpos, podemos concluir que a energia cinética de um corpo será cada vez maior quanto maior for a sua velocidade. Do mesmo modo, poderemos concluir que quanto maior for a massa de um corpo maior será sua energia cinética. Para mostrar isso, tomemos como exemplo uma motocicleta e um caminhão. Somente pelas dimensões é possível notar que o caminhão possui mais massa em relação à moto, e que ele também desenvolve velocidades maiores que a de uma moto. De forma a sintetizar essas observações, é possível escrever energia cinética a partir da seguinte equação:



Onde m é a massa do corpo e V é a sua velocidade. A unidade de energia cinética é o joule, representado pela letra J.


Energia

O que vem a ser energia? A energia se apresenta de várias formas na natureza, de maneira que uma forma de energia se converte ou se transforma em outra, pois, de acordo com a lei de Lavoisier, na natureza nada se perde, nada se cria, tudo se transforma - conceituando, assim, a lei da conservação da energia. Conceituar energia não é tarefa fácil, mas podemos definir energia como sendo a capacidade que um corpo tem de realizar trabalho. Observe os seguintes exemplos que podem auxiliar nesse entendimento de energia:

·        As águas de uma cachoeira possuem energia, pois são capazes de realizar trabalho ao mover as turbinas de uma usina hidrelétrica, por exemplo.

·         A gasolina possui energia, pois ela é capaz de realizar trabalho fazendo o automóvel se locomover.


E muitos outros exemplos. Como dissemos, energia é a capacidade que um corpo tem de realizar trabalho. A unidade de energia no Sistema Internacional de Unidades (SI) é o joule, assim como a unidade de trabalho de uma força. Essa unidade foi em homenagem a James Prescott Joule, um físico britânico. Ele estudou a natureza do calor e descobriu as relações com o trabalho mecânico.

quinta-feira, 7 de novembro de 2013

Sobre James Watt

[creditofoto]
Aos esforços de James Watt deve-se o desenvolvimento dos motores
Por volta de 1700 tornou-se conhecido um princípio físico que poderia servir para a construção de um motor: um inglês, Thomas Newcomen, construíra um aparelho que utilizava o vapor de água produzido numa caldeira, aquecida a carvão, para fazer girar uma bomba. A máquina tinha um movimento alternativo simples e constituiu, durante mais de meio século, o meio mais eficaz para bombear água. A invenção de Newcomen, divulgada em 1712, foi valiosa na luta contra os alagamentos nas profundas minas de carvão de seu país.

James Watt nasceu a 19 de janeiro de 1736, em Greenock, Escócia. Era o sexto de oito irmãos, cinco dos quais morreram na infância. Não era uma criança prodígio. Tímido, inseguro e mimado pela mãe, o menino sofria com terríveis dores de cabeça, que se prolongaram até a idade adulta. Desse modo, muitos eram os dias em que James ficava fechado no quarto. Para distraí-lo o pai lhe dava, como brinquedo, diversos instrumentos de navegação, bússolas e sextantes, que ele desmontava e consertava. Essa inocente brincadeira assumiu, mais tarde, importância fundamental.

Como não conseguiu freqüentar a escola primária, aprendeu com os pais a ler e a escrever, além dos princípios da aritmética. Por volta dos 13 anos mostrou grande interesse pela matemática e pela arte da navegação. Aos 16 anos, Watt partiu para Glasgow em busca de trabalho e foi empregado como aprendiz numa fábrica. Para quem queria ser construtor de instrumentos de medida, aquele não era o trabalho ideal. Ao fim de três anos, decidiu tentar a sorte em Londres.

No início, teve que se defrontar com as exigências de experiência e indicação; mas, finalmente, conseguiu empregar-se, com um contrato de um ano. Foi um período difícil, em que era obrigado a trabalhar dez horas por dia, gastando pouco com a alimentação. Além disso o clima de Londres, úmido e frio, causou-lhe reumatismo, obrigando-o a abandonar a cidade. De volta a Glasgow, decidiu trabalhar por conta própria e abriu uma loja de instrumentos.

No entanto, num ambiente conservador e tradicionalista, não era fácil conseguir fregueses, desconfiados como os técnicos e navegadores. Mas Watt conseguira arrumar clientes. Assim, em 1757 foi admitido, na qualidade de fabricante de instrumentos de medida, na Universidade de Glasgow. O trabalho na universidade tornou possível seu encontro com o motor a vapor de Newcomen. Dois anos antes, ele já discutira com seus amigos algumas idéias para melhorá-lo. Além disso, tinha tentado realizar algumas experiências sem bons resultados. Agora ele dispunha de um motor e das peças necessárias para reconstruí-lo.

Watt conseguiu descobrir que, para melhorar seu funcionamento, era necessário elevar a temperatura do vapor, resfriando-o depois bruscamente durante a expansão. Acrescentou o condensador de vapor e outros artifícios destinados a melhorar o rendimento do motor. Depois dessas modificações o resultado era muito semelhante ao do motor ainda hoje em uso, com condensador, caixa de distribuição e sistema biela-manivela, para obter o movimento rotativo a partir do alternado.

O engeneheiro fazia todas as experiências à noite porque durante o dia trabalhava para manter a família, pois seu pai estava arruinado. Sua única distração era passar o domingo no campo, em companhia de um tio materno e de sua prima, Margaret Miller, com quem se casou em 1764 e teve quatro filhos.

As primeiras experiências de Watt, destinadas a mostrar os méritos do seu motor, não foram vitoriosas: os recursos eram escassos e ele não conseguia ordenar seus negócios. Por quatro anos trabalhou como engenheiro civil e elaborou um projeto para um canal entre Forth e Clyde. A Câmara dos Comuns, entretanto, não aprovou o trabalho. Em 1769 fez um segundo projeto, desta vez para o canal destinado a transportar carvão para Glasgow.

Finalmente encontrou um financiador, J. Roebuck, para a aplicação em larga escala de sua descoberta, mas a sociedade fundada para esse fim faliu em pouco tempo. A associação com Matthew Boulton, engenheiro de Birmingham, foi mais afortunada. Conseguiu em 1769 a patente para o motor de Watt e, em 1775, a prorrogação da posse por mais 25 anos. A prova decisiva do invento veio quando uma mina alagada foi inteiramente drenada em dezessete dias, enquanto os métodos tradicionais exigiam meses de esforço.

Watt propôs também que seu motor fosse utilizado para operar os elevadores subterrâneos. O motor tinha numerosas aplicações e como substituía os cavalos, para dar ao comprador uma idéia de sua capacidade, a potência era expressa pelo número de cavalos que podia substituir, gerando a expressão horsepower (hp).

Os aperfeiçoamentos no modelo inicial sucederam-se, exigindo novas patentes, em 1781, 1782 e 1784. Outra invenção foi o controlador centrífugo, graças ao qual a velocidade dos motores rotativos foi automaticamente controlada. Esse trabalho é atualmente considerado como uma das primeiras aplicações da realimentação, um elemento essencial para a automação.



sábado, 2 de novembro de 2013

Associação em Paralelo

Nesse tipo de associação os resistores são ligados um do lado do outro, de forma que todos os resistores ficam submetidos à mesma diferença de potencial, veja como fica o esquema de um circuito com associação de resistores em paralelo:


A corrente elétrica total que circula por este tipo de circuito é igual à soma da corrente elétrica que atravessa cada um dos resistores, ou seja:

i = i1 + i2 + i3

O valor da resistência equivalente desse tipo de circuito elétrico é sempre menor do que o valor de qualquer uma das resistências que compõem o circuito. E para calcular o seu valor, o da resistência equivalente, podemos utilizar a seguinte equação matemática: